Prime Factors of Quantum Schubert Cell Algebras and Clusters for Quantum Richardson Varieties

نویسنده

  • T. H. LENAGAN
چکیده

The understanding of the topology of the spectra of quantum Schubert cell algebras hinges on the description of their prime factors by ideals invariant under the maximal torus of the ambient Kac–Moody group. We give an explicit description of these prime quotients by expressing their Cauchon generators in terms of sequences of normal elements in chains of subalgebras. Based on this, we construct large families of quantum clusters for all of these algebras and the quantum Richardson varieties associated to arbitrary symmetrizable Kac–Moody algebras and all pairs of Weyl group elements. Along the way we develop a quantum version of the Fomin–Zelevinsky twist map for all quantum Richardson varieties. Furthermore, we establish an explicit relationship between the Goodearl–Letzter and Cauchon approaches to the descriptions of the spectra of symmetric CGL extensions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Quantum Cohomology of Flag Varieties and the Periodicity of the Littlewood-richardson Coefficients

We give conditions on a curve class that guarantee the vanishing of the structure constants of the small quantum cohomology of partial flag varieties F (k1, . . . , kr; n) for that class. We show that many of the structure constants of the quantum cohomology of flag varieties can be computed from the image of the evaluation morphism. In fact, we show that a certain class of these structure cons...

متن کامل

On the quantum cohomology of adjoint varieties

We study the quantum cohomology of quasi-minuscule and quasi-cominuscule homogeneous spaces. The product of any two Schubert cells does not involve powers of the quantum parameter higher than 2. With the help of the quantum to classical principle we give presentations of the quantum cohomology algebras. These algebras are semi-simple for adjoint non coadjoint varieties and some properties of th...

متن کامل

Mutations of Puzzles and Equivariant Cohomology of Two-step Flag Varieties

We introduce a mutation algorithm for puzzles that is a threedirection analogue of the classical jeu de taquin algorithm for semistandard tableaux. We apply this algorithm to prove our conjectured puzzle formula for the equivariant Schubert structure constants of two-step flag varieties. This formula gives an expression for the structure constants that is positive in the sense of Graham. Thanks...

متن کامل

Topological Analysis and Quantum Mechanical Structure of C4 and C5 Pure Carbon Clusters

Two bonding models i.e cumullenic and acetylenic models have been proposed to account for thebonding patterns in linear carbon clusters while the bonding patterns in cyclic and 3D geometrieS of theseclusters have remained ambiguous.This work presents the bonding patterns in various C4 and C5 pure clusters at MP2/aug-cc-pVTZ level oftheory. This subject is studied in the light of modern bonding ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015